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Abstract: In this paper, we develop Implicit and Crank-Nicolson finite difference scheme for time fractional radon diffusion 

equation. We discuss the stability and convergence of both the scheme. As an application of this scheme, we obtain the numerical 

solutions of the test problem and represented graphically by mathematical software Mathematica and finally, we compare the rate 

of convergence of both the scheme. 
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1. INTRODUCTION 
 

The subject of fractional calculus that is, calculus of integrals and derivatives of any arbitrary real or complex order has gained 

considerable popularity and importance during the past four decades and longer, due mainly to its demonstrated applications in 

numerous seemingly diverse and widespread fields of science and engineering, bio-science, applied mathematics, finance etc. 

[1,2,6]. In the development of fractional calculus and applications anomalous diffusion equation has received great interest. A 

physical approach to anomalous diffusion equation containing fractional order derivatives in time or space or time-space. As 

analytical solution of fractional diffusion equation is very difficult to find thus researchers develop the finite difference schemes 

to find numerical solution [3, 4, 7, 8, 9, 10, 11].  Radon is naturally occurring radioactive gas which is colorless, odorless and 

comes from the decay of uranium in rocks, soil and groundwater. Radon is present outdoors and indoors. Due to hazards 

properties of radon researchers have great interest to study the radon transport through soil, activated charcoal, concrete, etc. [5, 

12, 13, 14, 15, 16]. In this paper we study the diffusion of radon in an activated charcoal medium. The diffusion theory came from 

the famous German physiologist Adolf Fick (1829-1901).  He stated that the flux density J is proportional to the gradient of 

concentration. This gives,       

                                                               J = −𝐷
∂C

∂t
                                                                     

where J is the radon flux density is diffusion coefficient , 
∂C

∂t
  is gradient of radon concentration and D is diffusivity coefficient of 

radon.  

Now the change in concentration to change in time and position is stated by the Fick’s second law which is the extension of 

Fick’s first law, that gives, 

 

∂C(x, t)

∂t
=

𝜕2C(x, t)

𝜕𝑥2
− 𝜆c(x, t) 

 

where 𝜆 = 2.1×10−6𝑠−1 is the decay constant. A theoretical study of radon measurements with activated charcoal was studied by 

Nikezic and Urosevic [17]. In this study we develop the time fractional Implicit and Crank-Nicolson finite difference method for 

fractional order radon diffusion equation. We consider the following time fractional radon diffusion equation [TFRDE], 

 

        
  𝜕𝛼C(x,t)

𝜕𝑡𝛼 = 𝐷
𝜕2C(x,t)

𝜕𝑡2  − 𝜆C(x, t), 0 < 𝑥 < 𝐿, 0 ≤ 𝛼 ≤ 1, 𝑡 ≥ 0                                         (1.1) 

          

                           𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ∶  𝐶(𝑥, 0) = 0, 0 < 𝑥 < 𝐿                          (1.2)                𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠: 𝐶(0, 𝑡) =

𝑐0 𝑎𝑛𝑑 
∂C(x,t)

∂t
= 0, 𝑡 ≥ 0                                  (1.3)  

  

 Definition 1.1:- The Caputo time-fractional derivative of order 𝛼, (0 < 𝛼 ≤ 1) is defined by, 

  

𝜕𝛼C(𝑥,t)

𝜕𝑡𝛼
=

1

Г(1 − 𝛼)
∫

𝜕𝐶(𝑥, 𝑡)

𝜕𝜂

𝑑𝜂

(𝑡 − 𝜂)𝛼

𝑡

0

 ; 0 < 𝛼 < 1 

=  
𝜕𝐶(𝑥, 𝑡)

𝜕𝜂
 ;                       𝛼 = 1       
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2. FINITE DIFFERENCE SCHEME: 

 

2.1 Implicit Finite Difference Scheme for TFRDE: 
In this section, we develop the time fractional implicit finite difference method for fractional order radon diffusion equation (1.1)-

(1.3). 

We define, 

𝑡𝑘 = 𝑘𝜏 ;  𝑘 = 0,1,2, … , 𝑁 𝑎𝑛𝑑 𝑥𝑖 = 𝑖ℎ ;  𝑖 = 0,1,2, … , 𝑁  
where 

𝜏 =
𝑇

𝑁
  𝑎𝑛𝑑 ℎ =

𝐿

𝑀
 

Let 𝐶(𝑥𝑖,𝑡𝑘); 𝑖 = 0,1,2, … , 𝑀 𝑎𝑛𝑑 𝑘 = 0,1,2, … , 𝑁 be the exact solution of time fractional radon diffusion equation (TFRDE) 

(1.1)-(1.3) at mesh point (𝑥𝑖,𝑡𝑘). Let 𝐶𝑖
𝑘 be the numerical approximation of the point 𝐶(𝑥𝑖,𝑡𝑘). The time fractional derivative is 

approximated by the following scheme, 

         
𝜕𝛼C(𝑥𝑖,𝑡𝑘)

𝜕𝑡𝛼
   ≈

1

Г(1 − 𝛼)
        ∑

C(𝑥𝑖,𝑡𝑗+1) − C(𝑥𝑖,𝑡𝑗)

𝜏

𝑘

𝑗=0

∫
𝑑𝜂

(𝑡𝑘+1 − 𝜂)𝛼
+ 𝑂(𝜏)    

(𝑗+1)𝜏

𝑗𝜏

=
1

Г(1 − 𝛼)
∑

C(𝑥𝑖,𝑡𝑗+1) − C(𝑥𝑖,𝑡𝑗)

𝜏
∫

𝑑𝜉

𝜉𝛼

(𝑘−𝑗+1)𝜏

(𝑘−𝑗)𝜏

𝑘

𝑗=0

 + 𝑂(𝜏)           

=
1

Г(1 − 𝛼)
∑

C(𝑥𝑖,𝑡𝑗+1) − C(𝑥𝑖,𝑡𝑗)

𝜏

𝑘

𝑗=0

[
(𝑗 + 1)1−𝛼 − 𝑗1−𝛼

1 − 𝛼
] 𝜏1−𝛼  + 𝑂(𝜏)    

=
𝜏−𝛼

Г(2 − 𝛼)
[𝐶𝑖

𝑘+1 − 𝐶𝑖
𝑘] +

𝜏−𝛼

Г(2 − 𝛼)
∑ 𝑏𝑗[𝐶𝑖

𝑘−𝑗+1
− 𝐶𝑖

𝑘−𝑗
]

𝑘

𝑗=1

+ 𝑂(𝜏) 

                               

where  𝑏𝑗 = (𝑗 + 1)1−𝛼 − 𝑗1−𝛼 , 𝑗 = 0,1,2, … , 𝑁  

Now for
𝜕2𝐶

𝜕𝑥2, we adopt a symmetric second order difference quotient in space at time level 𝑡 = 𝑡𝑘+1 

𝜕2𝐶

𝜕𝑥2
=

C(𝑥𝑖−1,𝑡𝑘+1) − 2C(𝑥𝑖,𝑡𝑘+1) + C(𝑥𝑖+1,𝑡𝑘+1)

ℎ2
 

 

𝜕2𝐶

𝜕𝑥2
=

𝐶𝑖−1
𝑘+1 − 𝐶𝑖

𝑘+1 + 𝐶𝑖+1
𝑘+1

ℎ2
 

Therefore, substituting in equation (1.1), we get 

 

  
𝜏−𝛼

Г(2−𝛼)
[𝐶𝑖

𝑘+1 − 𝐶𝑖
𝑘] +

𝜏−𝛼

Г(2−𝛼)
∑ 𝑏𝑗[𝐶𝑖

𝑘−𝑗+1
− 𝐶𝑖

𝑘−𝑗
]𝑘

𝑗=1 = 𝐷 [
𝐶𝑖−1

𝑘+1−𝐶𝑖
𝑘+1+𝐶𝑖+1

𝑘+1

ℎ2 ] − 𝜆C(𝑥𝑖,𝑡𝑘) 

where  𝑏𝑗 = (𝑗 + 1)1−𝛼 − 𝑗1−𝛼; 𝑗 = 0,1,2, … , 𝑘.    

 

Therefore, the complete fractional approximated initial boundary value problem is, 

                          −𝑟𝑐𝑖−1
1 + (1 + 2𝑟)𝑐𝑖

1 − 𝑟𝑐𝑖+1
1 = (1 − 𝜇)𝑐𝑖

0; 𝑓𝑜𝑟 𝑘 = 0                      (2.1) 

−𝑟𝑐𝑖−1
𝑘+1 + (1 + 2𝑟)𝑐𝑖

𝑘+1 − 𝑟𝑐𝑖+1
𝑘+1 = (1 − 𝜇 − 𝑏1)𝑐𝑖

𝑘 + ∑(𝑏𝑗 − 𝑏𝑗+1)𝑐𝑖
𝑘−𝑗

+ 𝑏𝑘𝑐𝑖
0

𝑘−1

𝑗=1

; 

                                                              𝑓𝑜𝑟 𝑘 ≥ 1                                                    (2.2) 

initial condition: 𝑐𝑖
0, 𝑖 = 0,1,2, … , 𝑀                                                                              (2.3) 

boundary conditions: 𝑐0
𝑘 = 𝑐0  and 𝑐𝑀+1

𝑘+1 = 𝑐𝑀−1
𝑘+1 . ; 𝑘 = 0,1,2, …                                   (2.4) 

where 𝑟 =
𝐷Г(2 − 𝛼)𝜏𝛼

ℎ2
 ; µ =  𝜆Г(2 − 𝛼)𝜏𝛼; 𝑏𝑗 = (𝑗 + 1)1−𝛼 − 𝑗1−𝛼;  𝑗 = 0,1,2, … , 𝑘  ; 

𝑖 = 0,1,2, … , 𝑀      𝑎𝑛𝑑       𝑘 = 0,1,2, … , 𝑁  
The problem (2.1)-(2.4) is a complete discretization of the problem (1.1)-(1.3). 

Therefore, the fractional approximated initial boundary value problem (2.1)-(2.4) can be written in the following matrix equation 

form 

𝐴𝐶1 = (1 − µ)𝐶0 + 𝐸; 𝑓𝑜𝑟 𝑘 = 0                     (2.5)                         

𝐴𝐶𝑘+1 = (1 − µ − 𝑏1)𝐶𝑘 + ∑(𝑏𝑗 − 𝑏𝑗+1)𝐶𝑘−𝑗

𝑘−1

𝑗=1

+ 𝑏𝑘𝐶0 + 𝐹 ; 

                                           𝑓𝑜𝑟 𝑘 ≥ 1                                                                  (2.6) 

   where           

 

𝐴 = ( 
1 + 2𝑟 −𝑟 ⋯

−𝑟 1 + 2𝑟 −𝑟
⋮ ⋮ ⋱

   

⋯
⋯

−2𝑟

      ⋯
     ⋯

      1 + 2𝑟
 

       

) ;   

 

𝐶1 = [𝑐1
1, 𝑐2

1, 𝑐3
1, … … … . , 𝑐𝑀

1 ]𝑇; 𝐶0 = [𝑐1
0, 𝑐2

0, 𝑐3
0, … … … . , 𝑐𝑀

0 ]𝑇;  𝐶𝑘 = [𝑐1
𝑘 , 𝑐2

𝑘 , 𝑐3
𝑘 , … … … . , 𝑐𝑀

𝑘 ]𝑇;  
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𝐸 = [𝑟𝑐0
1 , 0, … … … … . . ,0]𝑇; 𝐹 = [𝑟𝑐0

𝑘+1, 0, … … … … . . ,0]𝑇; 𝑟 =
𝐷Г(2 − 𝛼)𝜏𝛼

ℎ2
 ; µ =  𝜆Г(2 − 𝛼)𝜏𝛼; 

𝑏𝑗 = (𝑗 + 1)1−𝛼 − 𝑗1−𝛼 ;  𝑗 = 0,1,2, … , 𝑘  ; 𝑖 = 0,1,2, … , 𝑀      𝑎𝑛𝑑       𝑘 = 0,1,2, … , 𝑁  

 

2.1 Crank-Nicolson Finite Difference Scheme for TFRDE:  

In this method, we discretize the time fractional derivative by Caputo sense as in previous section and for  
𝜕𝑐2

𝜕𝑥2 , we adopt the 

second order central difference scheme in space for each interior grid point 𝑥𝑖 , 0 ≤ 𝑖 ≤ 𝑀. Therefore, 

𝜕2C(𝑥𝑖,𝑡𝑘)

𝜕𝑡2
=

1

2
[𝛿𝑥

2𝐶𝑖
𝑘+1 + 𝛿𝑥

2𝐶𝑖
𝑘] 

 

                                                                        =
1

2
[
𝐶𝑖−1

𝑘+1 − 2𝐶𝑖
𝑘+1 + 𝐶𝑖+1

𝑘+1

ℎ2
+

𝐶𝑖−1
𝑘 − 2𝐶𝑖

𝑘 + 𝐶𝑖+1
𝑘

ℎ2
] 

where  𝛿𝑥 is the central difference operator. 

The fractional approximated initial boundary value problem is  

        −𝛼𝑐𝑖−1
1 + (1 + 2𝛼)𝑐𝑖

1 − 𝛼𝑐𝑖+1
1 =  𝛼𝑐𝑖−1

0 + (1 − 2 𝛼 − 𝛽)𝑐𝑖
0 +  𝛼𝑐𝑖+1

0 ;         for k=0,      (2.7) 

 

For  𝑘 ≥ 1,we have, 

 

− 𝛼𝑐𝑖−1
𝑘+1 + (1 + 2 𝛼)𝑐𝑖−1

𝑘+1 −  𝛼𝑐𝑖+1
𝑘+1                                                                                                          

 

     =  𝛼𝑐𝑖−1
𝑘 + (1 − 2 𝛼 − 𝛽 − 𝑏1)𝑐𝑖

𝑘 +  𝛼𝑐𝑖+1
𝑘 + ∑ (𝑏𝑗 − 𝑏𝑗+1)𝑘−1

𝑗=1 𝑐𝑖
𝑘−𝑗

+ 𝑏𝑘𝑐𝑖
0                      (2.8) 

 

 

The initial condition, 𝑐𝑖
0 = 0, 𝑖 = 0,1,2, … , 𝑀                                                                            (2.9) 

The boundary conditions, 𝑐0
𝑘 = 𝑐0  and  

∂c(L,t)

∂x
= 0; 𝑘 = 0,1,2, …                                           (2.10) 

where  𝛼 =
𝐷Г(2−𝛼)𝜏−𝛼

2ℎ2  , 𝛽 =  𝜆 Г(2 − 𝛼)𝜏𝛼 and  𝑏𝑗 = (𝑗 + 1)1−𝛼 − 𝑗1−𝛼; 𝑗 = 1,2,3, … … . . , 𝑘 

 

The fractional approximated initial boundary value problem can be written in the following matrix equation form, 

                                                        𝑃𝐶1 = 𝑄𝐶0 + 𝑆                                                                     (2.11) 

             𝑃𝐶𝑘+1 = 𝐶𝐶𝑘 + ∑ (𝑏𝑗 − 𝑏𝑗+1)𝐶𝑘−𝑗𝑘−1
𝑗=1 + 𝑏𝑘𝐶0 + 𝑆                                                       (2.12) 

Where, 

 

     

𝑃 = ( 
1 + 2𝛼 −𝛼 ⋯

−𝛼 1 + 2𝛼 −𝛼
⋮ ⋮ ⋱

   

⋯
⋯

−2𝛼

      ⋯
     ⋯

      1 + 2𝛼
 

       

) ;   

 

𝑄 = ( 
1 − 2𝛼 − 𝛽 𝛼 ⋯

𝛼 1 − 2𝛼 − 𝛽 𝛼
⋮ ⋮ ⋱

   

⋯
⋯
2𝛼

      ⋯
     ⋯

      1 − 2𝛼 − 𝛽
 

       

) ;   

 

𝐶 = ( 
1 − 2𝛼 − 𝛽 − 𝑏1 𝛼 ⋯

𝛼 1 − 2𝛼 − 𝛽 − 𝑏1 𝛼
⋮ ⋮ ⋱

   

⋯
⋯
2𝛼

      ⋯
     ⋯

      1 − 2𝛼 − 𝛽 − 𝑏1

 

       

) ;   

 

𝐶𝑘 = [𝑐1
𝑘 , 𝑐2

𝑘 , 𝑐3
𝑘 , … … … . , 𝑐𝑀

𝑘 ]𝑇; 
 

𝐶0 = [𝑐1
0, 𝑐2

0, 𝑐3
0, … … … . , 𝑐𝑀

0 ]𝑇; 
 

𝑆 = [𝑟𝑐0
1, 0,0, … … … … . . ,0]𝑇; 

 

                           𝛼 =
𝐷Г(2−𝛼)𝜏−𝛼

2ℎ2 ;  𝛽 =  𝜆 Г(2 − 𝛼)𝜏𝛼  

 

                  and  𝑏𝑗 = (𝑗 + 1)1−𝛼 − 𝑗1−𝛼 , 𝑗 = 1,2, … … … , 𝑘 

 

3. STABILITY AND CONVERGENCE OF THE SCHEME: 
 

3.1 Implicit Finite Difference Scheme for TFRDE: 
Lemma 3.1.1:- [17] If 𝜆𝑗(𝐴); 𝑗 = 1,2, … , 𝑀 − 1 represents eigenvalues of matrix A then we prove the following results, 

1) ⎸𝜆𝑗(𝐴) ⎸ ≥ 1 ; 𝑗 = 1,2, … , 𝑀 − 1 

2) ⎸⎸𝐴−1⎸⎸2 ≤ 1 

Theorem(3.1.1):-The solution of the fractional approximated IBVP  (2.1)-(2.4) is unconditionally stable.[17] 
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Also, the convergence of the approximate finite difference scheme (2.1) -(2.4). Let 𝐶(𝑥𝑖 , 𝑡𝑘) be the exact solution of the TFRDE 

(1.1)-(1.3) and 𝐶𝑖
𝑘 be the exact solution of the discrete equation (2.1)-(2.4) at the mesh point(𝑥𝑖 , 𝑡𝑘), 𝑤ℎ𝑒𝑟𝑒 𝑖 = 0,1, … , 𝑀 −

1; 𝑘 = 1,2, … , 𝑁.We define, 𝑒𝑖
𝑘 = 𝐶(𝑥𝑖 , 𝑡𝑘) − 𝐶𝑖

𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 0,1, … , 𝑀 − 1; 𝑘 = 1,2, … , 𝑁 and 𝐸𝑘 = (𝑒1
𝑘, 𝑒2

𝑘 , … , 𝑒𝑀
𝑘 ) 

Now, we have,  𝐸0 = 0, 𝐸0
𝑘 = 0 𝑎𝑛𝑑 𝐸𝑁

𝑘 = 0. 

From (2.1), we get, 

                   −𝑟𝑒𝑖−1
1 + (1 + 2𝑟)𝑒𝑖

1 − 𝑟𝑒𝑖+1
1 = (1 − 𝜇)𝑒𝑖

0; 𝑓𝑜𝑟 𝑘 = 0       (4.1) 

From (2.2), we get, 

 

−𝑟𝑒𝑖−1
𝑘+1 + (1 + 2𝑟)𝑒𝑖

𝑘+1 − 𝑟𝑒𝑖+1
𝑘+1 = (1 − 𝜇 − 𝑏1)𝑒𝑖

𝑘 + ∑(𝑏𝑗 − 𝑏𝑗+1)𝑒𝑖
𝑘−𝑗

+ 𝑏𝑘𝑒𝑖
0

𝑘−1

𝑗=1

; 

𝑓𝑜𝑟 𝑘 ≥ 1      (4.2)                

where 𝑟 =
𝐷Г(2 − 𝛼)𝜏𝛼

ℎ2
 ; µ =  𝜆Г(2 − 𝛼)𝜏𝛼; 𝑏𝑗 = (𝑗 + 1)1−𝛼 − 𝑗1−𝛼;  𝑗 = 0,1,2, … , 𝑘  ; 

𝑖 = 0,1,2, … , 𝑀      𝑎𝑛𝑑       𝑘 = 0,1,2, … , 𝑁. 
 

Theorem 3.1.2 [17] The fractional order implicit finite difference scheme (2.1)-(2.4) for TFRDE (1.1)-(1.3) is convergent and the 

solution Ci
k of the discretize scheme (2.1)-(2.4) and the solution C(xi, tk)  of the equation (1.1)-(1.3) satisfy, 

||𝐶(𝑥𝑖 , 𝑡𝑘) − 𝐶𝑖
𝑘||  ≤ 𝑘||𝐸||∞ + 𝑂 (𝜏1−𝛼 , ℎ2); 𝑖 = 0,1, … , 𝑀 − 1; 𝑘 = 0,1, … , 𝑁 

 

3.2 Crank-Nicolson Finite Difference Scheme for TFRDE: 
 

Lemma 3.2.1:- [18] If 𝜆𝑗(𝑃); 𝑗 = 1,2, … , 𝑀 − 1 represents eigenvalues of matrix P then we prove the following results, 

1) ⎸𝜆𝑗(𝑃) ⎸ ≥ 1 ; 𝑗 = 1,2, … , 𝑀 − 1 

2) ⎸⎸𝑃−1⎸⎸2 ≤ 1 

3) ⎸⎸𝑄⎸⎸2 < 1 

4) ⎸⎸𝐶⎸⎸2 < 1 
Theorem 3.2.1: [18] The solution of the finite difference scheme (2.7)-(2.10) for TFRDE (1.1)-(1.3) is unconditionally stable. 

Theorem 3.2.2: [18] The finite difference scheme (2.7)-(2.10) for TFRDE (1.1)-(1.3) is unconditionally convergent, that is to 

prove 

||𝐸𝑘||2 ≤ ||𝐸0||2   , 𝑎𝑠 (ℎ, 𝜏) → (0,0) 
 

4. COMPARATIVE STUDY OF NUMERICAL SOLUTION OF BOTH THE SCHEME: 

 
In this section, we obtain the approximated solution of TFRDE of both the Implicit and C-N finite difference schemes with initial 

and boundary conditions and compare their solutions. To obtain the numerical solution, it is important to use some analytical 

model. Thus, we present an example to demonstrate that TFRDE can be applied to simulate behavior of a fractional diffusion 

equation with the following parameters by using Mathematica Software. . We consider the following, dimensionless time 

fractional radon diffusion equation with suitable initial and boundary conditions. 

 

  𝜕𝛼C(x, t)

𝜕𝑡𝛼
= 𝐷

𝜕2C(x, t)

𝜕𝑡2
 − 𝜆C(x, t), 0 < 𝑥 < 𝐿; 0 < 𝛼 < 1; t > 0 

                                   initial condition: 𝐶(𝑥, 0) = 0,0 < 𝑥 < 𝐿 

                                   boundary conditions: 𝐶(0, 𝑡) = 𝑐0 𝑎𝑛𝑑 
∂C(x,t)

∂t
= 0, 𝑡 ≥ 0 

with the radon diffusion coefficient 𝐷 = 1.43 × 10−6 𝐵𝑞 𝑚3⁄ . The numerical solutions obtained at t = 0.05 by considering the 

parameters 𝐿 = 1.7278𝑐𝑚 ,   
 

𝜆 = 2.1 × 10−6𝑠−1, 𝜏 = 0.05, 𝑘 = 4 𝑚2 𝑘𝑔⁄ , 𝜌 = 0.5 𝑔 𝑐𝑚3⁄ , 𝐶0 = 200 𝐵𝑞 𝑚3⁄ , 
                        𝐶(0, 𝑡) = 40 × 103,    𝛼 = 0.9. 

The comparison of solutions of RDE of Implicit and Crank Nicolson finite difference scheme respectively for 𝛼 = 0.9 is shown 

in table  and graphically as in figure. 
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Figure . The comparative approximate solution of radon diffusion equation for 𝛼 = 0.9 

 

 

Length Implicit TFRDE C-N TFRDE Difference 

0.0000 0.0000 0.0000 0.0000 

 

0.17278 5.25203 × 10-6 2.62682 × 10-6 2.62202 × 10-6 

 

0.34556 

 

8.14009 × 10-14 3.72682 × 10-14 4.41327 × 10-14 

0.51834 

 

9.03201 × 10-22 3.66102 × 10-22 5.77805 × 10-22 

0.69112 

 

9.03201 × 10-30 2.77251 × 10-30 6.2595 × 10-30 

0.8639 

 

7.51868 × 10-38 1.72285 × 10-38 5.79583 × 10-38 

0.03668 

 

5.62548 × 10-46 9.14678 × 10-47 4.7108 × 10-46 

0.20246 

 

3.86659 × 10-54 4.2722 × 10-55 3.43937 × 10-54 

1.38224 

 

2.47959 × 10-62 1.74427 × 10-63 2.30016 × 10-62 

1.55502 

 

1.5007 × 10-70 6.89145 × 10-72 1.43179 × 10-70 

1.7278 

 

1.72941 × 10-78 4.90633 × 10-80 1.68035 × 10-78 

 

Table. Comparison of solutions of RDE of Implicit and Crank Nicolson finite difference scheme         

respectively for 𝛼 = 0.9 

 

 

 

5. CONCLUSION 

 

We discuss the fractional order Implicit and Crank-Nicolson finite difference scheme for TFRDE and also, the stability and 

convergence of the scheme. As an application of this method we obtain the numerical solution of text problem and its solution is 

simulated graphically by mathematical software Mathematica. Also we observe that, the Implicit and Crank Nicolson finite 

difference scheme for Radon diffusion equation work equally. The difference between the solutions is not significantly differing, 

but Radon diffusion is very hazardous for human life. Therefore, the small change in solution is also important. The Crank-

Nicolson finite difference scheme is more accurate and reliable than the implicit finite difference scheme because it has a higher 

order accuracy. 
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